HyperAIHyperAI

Command Palette

Search for a command to run...

5 months ago

Zero-shot Learning of Drug Response Prediction for Preclinical Drug Screening

Kun Li; Yong Luo; Xiantao Cai; Wenbin Hu; Bo Du

Zero-shot Learning of Drug Response Prediction for Preclinical Drug Screening

Abstract

Conventional deep learning methods typically employ supervised learning for drug response prediction (DRP). This entails dependence on labeled response data from drugs for model training. However, practical applications in the preclinical drug screening phase demand that DRP models predict responses for novel compounds, often with unknown drug responses. This presents a challenge, rendering supervised deep learning methods unsuitable for such scenarios. In this paper, we propose a zero-shot learning solution for the DRP task in preclinical drug screening. Specifically, we propose a Multi-branch Multi-Source Domain Adaptation Test Enhancement Plug-in, called MSDA. MSDA can be seamlessly integrated with conventional DRP methods, learning invariant features from the prior response data of similar drugs to enhance real-time predictions of unlabeled compounds. We conducted experiments using the GDSCv2 and CellMiner datasets. The results demonstrate that MSDA efficiently predicts drug responses for novel compounds, leading to a general performance improvement of 5-10\% in the preclinical drug screening phase. The significance of this solution resides in its potential to accelerate the drug discovery process, improve drug candidate assessment, and facilitate the success of drug discovery.

Code Repositories

drugd/msda
Official
pytorch

Benchmarks

BenchmarkMethodologyMetrics
zero-shot-learning-on-gdscv2MSDA
Pearson correlation coefficient (PCC): 0.52

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp