Command Palette
Search for a command to run...
Bilateral Reference for High-Resolution Dichotomous Image Segmentation
Zheng Peng ; Gao Dehong ; Fan Deng-Ping ; Liu Li ; Laaksonen Jorma ; Ouyang Wanli ; Sebe Nicu

Abstract
We introduce a novel bilateral reference framework (BiRefNet) forhigh-resolution dichotomous image segmentation (DIS). It comprises twoessential components: the localization module (LM) and the reconstructionmodule (RM) with our proposed bilateral reference (BiRef). The LM aids inobject localization using global semantic information. Within the RM, weutilize BiRef for the reconstruction process, where hierarchical patches ofimages provide the source reference and gradient maps serve as the targetreference. These components collaborate to generate the final predicted maps.We also introduce auxiliary gradient supervision to enhance focus on regionswith finer details. Furthermore, we outline practical training strategiestailored for DIS to improve map quality and training process. To validate thegeneral applicability of our approach, we conduct extensive experiments on fourtasks to evince that BiRefNet exhibits remarkable performance, outperformingtask-specific cutting-edge methods across all benchmarks. Our codes areavailable at https://github.com/ZhengPeng7/BiRefNet.
Code Repositories
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| camouflaged-object-segmentation-on-camo | BiRefNet | MAE: 0.030 S-Measure: 0.904 Weighted F-Measure: 0.890 |
| camouflaged-object-segmentation-on-chameleon | BiRefNet | MAE: 0.015 S-measure: 0.932 weighted F-measure: 0.914 |
| camouflaged-object-segmentation-on-cod | BiRefNet | MAE: 0.014 S-Measure: 0.913 Weighted F-Measure: 0.874 |
| camouflaged-object-segmentation-on-nc4k | BiRefNet | MAE: 0.023 S-measure: 0.914 weighted F-measure: 0.894 |
| dichotomous-image-segmentation-on-dis-te1 | BiRefNet | E-measure: 0.908 HCE: 106 MAE: 0.038 S-Measure: 0.882 max F-Measure: 0.855 weighted F-measure: 0.814 |
| dichotomous-image-segmentation-on-dis-te2 | BiRefNet | E-measure: 0.935 HCE: 265 MAE: 0.035 S-Measure: 0.904 max F-Measure: 0.898 weighted F-measure: 0.863 |
| dichotomous-image-segmentation-on-dis-te3 | BiRefNet | E-measure: 0.952 HCE: 573 MAE: 0.030 S-Measure: 0.918 max F-Measure: 0.923 weighted F-measure: 0.891 |
| dichotomous-image-segmentation-on-dis-te4 | BiRefNet | E-measure: 0.937 HCE: 2746 MAE: 0.040 S-Measure: 0.898 max F-Measure: 0.900 weighted F-measure: 0.861 |
| dichotomous-image-segmentation-on-dis-vd | BiRefNet | E-measure: 0.928 HCE: 1006 MAE: 0.038 S-Measure: 0.898 max F-Measure: 0.889 weighted F-measure: 0.853 |
| rgb-salient-object-detection-on-davis-s | BiRefNet (DUTS, HRSOD) | F-measure: 0.976 MAE: 0.006 S-measure: 0.973 |
| rgb-salient-object-detection-on-davis-s | BiRefNet (DUTS, HRSOD, UHRSD) | F-measure: 0.979 MAE: 0.006 S-measure: 0.975 |
| rgb-salient-object-detection-on-davis-s | BiRefNet (DUTS) | F-measure: 0.966 MAE: 0.008 S-measure: 0.967 |
| rgb-salient-object-detection-on-davis-s | BiRefNet (HRSOD, UHRSD) | F-measure: 0.980 MAE: 0.006 S-measure: 0.976 |
| rgb-salient-object-detection-on-davis-s | BiRefNet (DUTS, UHRSD) | F-measure: 0.977 MAE: 0.006 S-measure: 0.975 |
| rgb-salient-object-detection-on-hrsod | BiRefNet (DUTS, UHRSD) | MAE: 0.014 S-Measure: 0.959 max F-Measure: 0.958 |
| rgb-salient-object-detection-on-hrsod | BiRefNet (DUTS, HRSOD) | MAE: 0.011 S-Measure: 0.962 max F-Measure: 0.963 |
| rgb-salient-object-detection-on-hrsod | BiRefNet (DUTS) | MAE: 0.014 S-Measure: 0.957 max F-Measure: 0.958 |
| rgb-salient-object-detection-on-hrsod | BiRefNet (HRSOD, UHRSD) | MAE: 0.016 S-Measure: 0.956 max F-Measure: 0.953 |
| rgb-salient-object-detection-on-hrsod | BiRefNet (DUTS, HRSOD, UHRSD) | MAE: 0.013 S-Measure: 0.962 max F-Measure: 0.961 |
| rgb-salient-object-detection-on-uhrsd | BiRefNet (HRSOD, UHRSD) | MAE: 0.019 S-Measure: 0.952 max F-Measure: 0.958 |
| rgb-salient-object-detection-on-uhrsd | BiRefNet (DUTS, UHRSD) | MAE: 0.019 S-Measure: 0.952 max F-Measure: 0.960 |
| rgb-salient-object-detection-on-uhrsd | BiRefNet (DUTS, HRSOD) | MAE: 0.024 S-Measure: 0.937 max F-Measure: 0.942 |
| rgb-salient-object-detection-on-uhrsd | BiRefNet (DUTS, HRSOD, UHRSD) | MAE: 0.016 S-Measure: 0.957 max F-Measure: 0.963 |
| rgb-salient-object-detection-on-uhrsd | BiRefNet (DUTS) | MAE: 0.030 S-Measure: 0.931 max F-Measure: 0.933 |
| salient-object-detection-on-dut-omron | BiRefNet (HRSOD, UHRSD) | F-measure: 0.810 MAE: 0.040 S-Measure: 0.864 Weighted F-Measure: 0.790 mean E-Measure: 0.879 mean F-Measure: 0.801 |
| salient-object-detection-on-dut-omron | BiRefNet (DUTS, UHRSD) | F-measure: 0.837 MAE: 0.036 S-Measure: 0.881 Weighted F-Measure: 0.815 mean E-Measure: 0.896 mean F-Measure: 0.825 |
| salient-object-detection-on-dut-omron | BiRefNet (DUTS, HRSOD) | F-measure: 0.818 MAE: 0.040 S-Measure: 0.868 Weighted F-Measure: 0.800 mean E-Measure: 0.882 mean F-Measure: 0.809 |
| salient-object-detection-on-dut-omron | BiRefNet (DUTS, HRSOD, UHRSD) | F-measure: 0.839 MAE: 0.038 S-Measure: 0.882 Weighted F-Measure: 0.815 mean E-Measure: 0.896 mean F-Measure: 0.825 |
| salient-object-detection-on-dut-omron | BiRefNet (DUTS) | F-measure: 0.813 MAE: 0.040 S-Measure: 0.868 Weighted F-Measure: 0.792 mean E-Measure: 0.878 mean F-Measure: 0.802 |
| salient-object-detection-on-duts-te | BiRefNet (DUTS, UHRSD) | MAE: 0.018 S-Measure: 0.942 Weighted F-Measure: 0.919 max F-measure: 0.942 mean E-Measure: 0.961 mean F-Measure: 0.925 |
| salient-object-detection-on-duts-te | BiRefNet (DUTS) | MAE: 0.019 S-Measure: 0.939 Weighted F-Measure: 0.913 max F-measure: 0.937 mean E-Measure: 0.958 mean F-Measure: 0.919 |
| salient-object-detection-on-duts-te | BiRefNet (DUTS, HRSOD, UHRSD) | MAE: 0.018 S-Measure: 0.944 Weighted F-Measure: 0.920 max F-measure: 0.943 mean E-Measure: 0.962 mean F-Measure: 0.925 |
| salient-object-detection-on-duts-te | BiRefNet (DUTS, HRSOD) | MAE: 0.018 S-Measure: 0.938 Weighted F-Measure: 0.918 max F-measure: 0.935 mean E-Measure: 0.960 mean F-Measure: 0.923 |
| salient-object-detection-on-duts-te | BiRefNet (HRSOD, UHRSD) | MAE: 0.020 S-Measure: 0.933 Weighted F-Measure: 0.907 max F-measure: 0.928 mean E-Measure: 0.954 mean F-Measure: 0.913 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.