HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Fundamental Benefit of Alternating Updates in Minimax Optimization

Jaewook Lee Hanseul Cho Chulhee Yun

Fundamental Benefit of Alternating Updates in Minimax Optimization

Abstract

The Gradient Descent-Ascent (GDA) algorithm, designed to solve minimax optimization problems, takes the descent and ascent steps either simultaneously (Sim-GDA) or alternately (Alt-GDA). While Alt-GDA is commonly observed to converge faster, the performance gap between the two is not yet well understood theoretically, especially in terms of global convergence rates. To address this theory-practice gap, we present fine-grained convergence analyses of both algorithms for strongly-convex-strongly-concave and Lipschitz-gradient objectives. Our new iteration complexity upper bound of Alt-GDA is strictly smaller than the lower bound of Sim-GDA; i.e., Alt-GDA is provably faster. Moreover, we propose Alternating-Extrapolation GDA (Alex-GDA), a general algorithmic framework that subsumes Sim-GDA and Alt-GDA, for which the main idea is to alternately take gradients from extrapolations of the iterates. We show that Alex-GDA satisfies a smaller iteration complexity bound, identical to that of the Extra-gradient method, while requiring less gradient computations. We also prove that Alex-GDA enjoys linear convergence for bilinear problems, for which both Sim-GDA and Alt-GDA fail to converge at all.

Code Repositories

hanseuljo/alex-gda
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
image-generation-on-lsun-bedroom-64-x-64WGAN-GP + TTUR + Alex-Adam
FID: 6.3

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp