HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Rethinking Data Augmentation for Robust LiDAR Semantic Segmentation in Adverse Weather

Junsung Park Kyungmin Kim Hyunjung Shim

Rethinking Data Augmentation for Robust LiDAR Semantic Segmentation in Adverse Weather

Abstract

Existing LiDAR semantic segmentation methods often struggle with performance declines in adverse weather conditions. Previous work has addressed this issue by simulating adverse weather or employing universal data augmentation during training. However, these methods lack a detailed analysis and understanding of how adverse weather negatively affects LiDAR semantic segmentation performance. Motivated by this issue, we identified key factors of adverse weather and conducted a toy experiment to pinpoint the main causes of performance degradation: (1) Geometric perturbation due to refraction caused by fog or droplets in the air and (2) Point drop due to energy absorption and occlusions. Based on these findings, we propose new strategic data augmentation techniques. First, we introduced a Selective Jittering (SJ) that jitters points in the random range of depth (or angle) to mimic geometric perturbation. Additionally, we developed a Learnable Point Drop (LPD) to learn vulnerable erase patterns with a Deep Q-Learning Network to approximate the point drop phenomenon from adverse weather conditions. Without precise weather simulation, these techniques strengthen the LiDAR semantic segmentation model by exposing it to vulnerable conditions identified by our data-centric analysis. Experimental results confirmed the suitability of the proposed data augmentation methods for enhancing robustness against adverse weather conditions. Our method achieves a notable 39.5 mIoU on the SemanticKITTI-to-SemanticSTF benchmark, improving the baseline by 8.1\%p and establishing a new state-of-the-art. Our code will be released at \url{https://github.com/engineerJPark/LiDARWeather}.

Code Repositories

engineerjpark/lidarweather
Official
pytorch
Mentioned in GitHub
engineerJPark/LiDAR-DataAug4Weather
Official
pytorch
Mentioned in GitHub

Benchmarks

BenchmarkMethodologyMetrics
lidar-semantic-segmentation-on-semanticstfSJ+LPD (SynLiDAR2SemanticSTF)
Mean IoU: 20.51
lidar-semantic-segmentation-on-semanticstfSJ+LPD (SemanticKITTI2SemanticSTF)
Mean IoU: 39.5

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp