HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

A light-weight rectangular decomposition large kernel convolution network for deformable medical image registration.

{Jian Zheng Xinye Ni Zeyi Li Gang Yuan Ziyu Wang Weiwei Cao Yuzhu Cao}

Abstract

The performance and speed of medical image registration have been greatly boosted by advanced deep-learning based methods. However, most current methods are challenged by large deformations between input images, which necessitate a compromise in computational cost to enhance the model’s receptive field and its ability to model long-range spatial relationships for improving registration performance. In order to enhance the performance of registration for images with large deformations at a lower computational cost, in this paper, we propose a light-weight registration model with the ability to model large receptive fields and long-range spatial relationships, named LL-Net. The core components of LL-Net consist of a Rectangular Decomposition Large Kernel Attention (RD-LKA) layer and a Spatial and Channel Fusion Attention (SC-Fusion) layer. The RD-LKA layer utilizes anisotropic depth-wise large kernel convolutions to capture large receptive fields with an extremely low parameter count while modeling long-range spatial relationships. Moreover, the SC-Fusion layer enhances the model’s feature fusion capability and strengthens feature representations at critical locations. Our LL-Net exhibits state-of-the-art performance across multiple datasets. Specifically, it achieves a Dice score of 76.7% and an HD95 of 2.983 mm on the IXI dataset, and a Dice score of 87.8% and an HD95 of 1.042 mm on the OASIS dataset. Experimental results substantiate the efficacy of LL-Net in capturing large receptive fields and modeling long-range spatial relationships. The code for LL-Net is available at https://github.com/BoyOfChu/LL_Net.

Benchmarks

BenchmarkMethodologyMetrics
medical-image-registration-on-ixiLL_Net
DSC: 0.767

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
A light-weight rectangular decomposition large kernel convolution network for deformable medical image registration. | Papers | HyperAI