HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

A Simple Episodic Linear Probe Improves Visual Recognition in the Wild

{Yi Yang Xiaohan Wang Linchao Zhu Yuanzhi Liang}

A Simple Episodic Linear Probe Improves Visual Recognition in the Wild

Abstract

Understanding network generalization and feature discrimination is an open research problem in visual recognition. Many studies have been conducted to assess the quality of feature representations. One of the simple strategies is to utilize a linear probing classifier to quantitatively evaluate the class accuracy under the obtained features. The typical linear probe is only applied as a proxy at the inference time, but its efficacy in measuring features' suitability for linear classification is largely neglected in training. In this paper, we propose an episodic linear probing (ELP) classifier to reflect the generalization of visual representations in an online manner. ELP is trained with detached features from the network and re-initialized episodically. It demonstrates the discriminability of the visual representations in training. Then, an ELP-suitable Regularization term (ELP-SR) is introduced to reflect the distances of probability distributions between ELP classifier and the main classifier. ELP-SR leverages a re-scaling factor to regularize each sample in training, which modulates the loss function adaptively and encourages the features to be discriminative and generalized. We observe significant improvements in three real-world visual recognition tasks, including fine-grained visual classification, long-tailed visual recognition, and generic object recognition. The performance gains show the effectiveness of our method in improving network generalization and feature discrimination.

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp