Command Palette
Search for a command to run...
CoSMo: Content-Style Modulation for Image Retrieval With Text Feedback
{Bohyung Han Dongwan Kim Seungmin Lee}

Abstract
We tackle the task of image retrieval with text feedback, where a reference image and modifier text are combined to identify the desired target image. We focus on designing an image-text compositor, i.e., integrating multi-modal inputs to produce a representation similar to that of the target image. In our algorithm, Content-Style Modulation (CoSMo), we approach this challenge by introducing two modules based on deep neural networks: the content and style modulators. The content modulator performs local updates to the reference image feature after normalizing the style of the image, where a disentangled multi-modal non-local block is employed to achieve the desired content modifications. Then, the style modulator reintroduces global style information to the updated feature. We provide an in-depth view of our algorithm and its design choices, and show that it accomplishes outstanding performance on multiple image-text retrieval benchmarks. Our code can be found at: https://github.com/postBG/CosMo.pytorch
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| image-retrieval-on-fashion-iq | CoSMo | (Recall@10+Recall@50)/2: 39.45 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.