Command Palette
Search for a command to run...
DTP-Net: A convolutional neural network model to predict threshold for localizing the lesions on dermatological macro-images
{Malaya Kumar Nath M Vipin Das Justin Joseph Vipin Venugopal}
Abstract
Highly focused images of skin captured with ordinary cameras, called macro-images, are extensively used in dermatology. Being highly focused views, the macro-images contain only lesions and background regions. Hence, the localization of lesions on the macro-images is a simple thresholding problem. However, algorithms that offer an accurate estimate of threshold and retain consistent performance on different dermatological macro-images are rare. A deep learning model, termed ‘Deep Threshold Prediction Network (DTP-Net)’, is proposed in this paper to address this issue. For training the model, grayscale versions of the macro-images are fed as input to the model, and the corresponding gray-level threshold values at which the Dice similarity index (DSI) between the segmented and the ground-truth images are maximized are defined as the targets. The DTP-Net exhibited the least value of root mean square error for the predicted threshold compared with 11 state-of-the-art threshold estimation algorithms (such as Otsu’s thresholding, Valley emphasized otsu’s thresholding, Isodata thresholding, Histogram slope difference distribution-based thresholding, Minimum error thresholding, Poisson’s distribution-based minimum error thresholding, Kapur’s maximum entropy thresholding, Entropy-weighted otsu’s thresholding, Minimum cross-entropy thresholding, Type-2 fuzzy-based thresholding, and Fuzzy entropy thresholding). The DTP-Net could learn the difference between the lesion and background in the intensity space and accurately predict the threshold that separates the lesion from the background. The proposed DTP-Net can be integrated into the segmentation module in automated tools that detect skin cancer from dermatological macro-images.
Benchmarks
| Benchmark | Methodology | Metrics |
|---|---|---|
| lesion-segmentation-on-university-of-waterloo | DTP-Net | Dice score: 0.884 ±0.100 |
| skin-lesion-segmentation-on-university-of | DTP-Net | Dice Score: 0.884 ±0.100 |
Build AI with AI
From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.