Command Palette
Search for a command to run...
Dynamic Context-Sensitive Filtering Network for Video Salient Object Detection
Dynamic Context-Sensitive Filtering Network for Video Salient Object Detection
Zhongxuan Luo Huchuan Lu Jingjing Li Wei Ji Shunyu Yao Yongri Piao Yifei Wang Jie Liu Miao Zhang
Abstract
The ability to capture inter-frame dynamics has been critical to the development of video salient object detection (VSOD). While many works have achieved great success in this field, a deeper insight into its dynamic nature should be developed. In this work, we aim to answer the following questions: How can a model adjust itself to dynamic variations as well as perceive fine differences in the real-world environment; How are the temporal dynamics well introduced into spatial information over time? To this end, we propose a dynamic context-sensitive filtering network (DCFNet) equipped with a dynamic context-sensitive filtering module (DCFM) and an effective bidirectional dynamic fusion strategy. The proposed DCFM sheds new light on dynamic filter generation by extracting location-related affinities between consecutive frames. Our bidirectional dynamic fusion strategy encourages the interaction of spatial and temporal information in a dynamic manner. Experimental results demonstrate that our proposed method can achieve state-of-the-art performance on most VSOD datasets while ensuring a real-time speed of 28 fps. The source code is publicly available at https://github.com/OIPLab-DUT/DCFNet.