HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

FocusCut: Diving Into a Focus View in Interactive Segmentation

{Ming-Ming Cheng Chun-Le Guo Zhao Zhang Zheng-Peng Duan Zheng Lin}

FocusCut: Diving Into a Focus View in Interactive Segmentation

Abstract

Interactive image segmentation is an essential tool in pixel-level annotation and image editing. To obtain a high-precision binary segmentation mask, users tend to add interaction clicks around the object details, such as edges and holes, for efficient refinement. Current methods regard these repair clicks as the guidance to jointly determine the global prediction. However, the global view makes the model lose focus from later clicks, and is not in line with user intentions. In this paper, we dive into the view of clicks' eyes to endow them with the decisive role in object details again. To verify the necessity of focus view, we design a simple yet effective pipeline, named FocusCut, which integrates the functions of object segmentation and local refinement. After obtaining the global prediction, it crops click-centered patches from the original image with adaptive scopes to refine the local predictions progressively. Without user perception and parameters increase, our method has achieved state-of-the-art results. Extensive experiments and visualized results demonstrate that FocusCut makes hyper-fine segmentation possible for interactive image segmentation.

Benchmarks

BenchmarkMethodologyMetrics
interactive-segmentation-on-sbdFocusCut
NoC@85: 3.40
NoC@90: 5.31

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
FocusCut: Diving Into a Focus View in Interactive Segmentation | Papers | HyperAI