HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Hierarchical Gumbel Attention Network for Text-based Person Search

{Tao Mei Zheng-Jun Zha Jiawei Liu Wu Liu Kecheng Zheng}

Abstract

Text-based person search aims to retrieve the pedestrian images that best match a given textual description from gallery images. Previous methods utilize the soft-attention mechanism to infer the semantic alignments between the regions of image and the corresponding words in sentence. However, these methods may fuse the irrelevant multi-modality features together which cause matching redundancy problem. In this work, we propose a novel hierarchical Gumbel attention network for text-based person search via Gumbel top-k re-parameterization algorithm. Specifically, it adaptively selects the strong semantically relevant image regions and words/phrases from images and texts for precise alignment and similarity calculation. This hard selection strategy is able to fuse the strong-relevant multi-modality features for alleviating the problem of matching redundancy. Meanwhile, a Gumbel top-k reparameterization algorithm is designed as a low-variance, unbiased gradient estimator to handle the discreteness problem of hard attention mechanism by an end-to-end manner. Moreover, a hierarchical adaptive matching strategy is employed by the model from three different granularities, i.e., word-level, phrase-level, and sentencelevel, towards fine-grained matching. Extensive experimental results demonstrate the state-of-the-art performance. Compared the existed best method, we achieve the 8.24% Rank-1 and 7.6% mAP relative improvements in the text-to-image retrieval task, and 5.58% Rank-1 and 6.3% mAP relative improvements in the image-to-text retrieval task on CUHK-PEDES dataset, respectively

Benchmarks

BenchmarkMethodologyMetrics
nlp-based-person-retrival-on-cuhk-pedesHGAN
R@1: 59.00
R@10: 86.62
R@5: 79.49

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Hierarchical Gumbel Attention Network for Text-based Person Search | Papers | HyperAI