HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Learning context-aware structural representations to predict antigen and antibody binding interfaces

{Chris Bailey-Kellogg Srivamshi Pittala}

Abstract

MotivationUnderstanding how antibodies specifically interact with their antigens can enable better drug and vaccine design, as well as provide insights into natural immunity. Experimental structural characterization can detail the ‘ground truth’ of antibody–antigen interactions, but computational methods are required to efficiently scale to large-scale studies. To increase prediction accuracy as well as to provide a means to gain new biological insights into these interactions, we have developed a unified deep learning-based framework to predict binding interfaces on both antibodies and antigens.ResultsOur framework leverages three key aspects of antibody–antigen interactions to learn predictive structural representations: (i) since interfaces are formed from multiple residues in spatial proximity, we employ graph convolutions to aggregate properties across local regions in a protein; (ii) since interactions are specific between antibody–antigen pairs, we employ an attention layer to explicitly encode the context of the partner; (iii) since more data are available for general protein–protein interactions, we employ transfer learning to leverage this data as a prior for the specific case of antibody–antigen interactions. We show that this single framework achieves state-of-the-art performance at predicting binding interfaces on both antibodies and antigens, and that each of its three aspects drives additional improvement in the performance. We further show that the attention layer not only improves performance, but also provides a biologically interpretable perspective into the mode of interaction.Availability and implementationThe source code is freely available on github at https://github.com/vamships/PECAN.git.

Benchmarks

BenchmarkMethodologyMetrics
antibody-antigen-binding-prediction-on-mipePECAN
AUC-PR: 0.713
AUC-ROC: 0.915
antibody-antigen-binding-prediction-on-pecanPECAN
AUC-PR: 0.675
AUC-ROC: 0.952

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Learning context-aware structural representations to predict antigen and antibody binding interfaces | Papers | HyperAI