HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Learning Geometric Transformation for Point Cloud Completion

{Xuelong Li DaCheng Tao Huiyu Zhou Liqiang Nie Haozhe Xie Xianzhu Liu Shengping Zhang}

Abstract

Point cloud completion aims to estimate the missing shape from a partial point cloud. Existing encoder-decoder based generative models usually reconstruct the complete point cloud from the learned distribution of the shape prior, which may lead to distortion of geometric details (such as sharp structures and structures without smooth surfaces) due to the information loss of the latent space embedding. To address this problem, we formulate point cloud completion as a geometric transformation problem and propose a simple yet effective geometric transformation network (GTNet). It exploits the repetitive geometric structures in common 3D objects to recover the complete shapes, which contains three sub-networks: geometric patch network, structure transformation network, and detail refinement network. Specifically, the geometric patch network iteratively discovers repetitive geometric structures that are related or similar to the missing parts. Then, the structure transformation network uses the discovered geometric structures to complete the corresponding missing parts by learning their spatial transformations such as symmetry, rotation, translation, and uniform scaling. Finally, the detail refinement network performs global optimization to eliminate unnatural structures. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art methods on the Shape-Net55-34, MVP, PCN, and KITTI datasets. Models and code will be available at https://github.com/ivislabhit/GTNet.

Benchmarks

BenchmarkMethodologyMetrics
point-cloud-completion-on-shapenetGTNet
Chamfer Distance: 7.15

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Learning Geometric Transformation for Point Cloud Completion | Papers | HyperAI