HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

License Plate Detection and Recognition in Unconstrained Scenarios

{Sergio Montazzolli Silva Claudio Rosito Jung}

License Plate Detection and Recognition in Unconstrained Scenarios

Abstract

Despite the large number of both commercial and academic methods for Automatic License Plate Recognition (ALPR), most existing approaches are focused on a specific license plate (LP) region (e.g. European, US, Brazilian, Taiwanese, etc.), and frequently explore datasets containing approximately frontal images. This work proposes a complete ALPR system focusing on unconstrained capture scenarios, where the LP might be considerably distorted due to oblique views. Our main contribution is the introduction of a novel Convolutional Neural Network (CNN) capable of detecting and rectifying multiple distorted license plates in a single image, which are fed to an Optical Character Recognition (OCR) method to obtain the final result. As an additional contribution, we also present manual annotations for a challenging set of LP images from different regions and acquisition conditions. Our experimental results indicate that the proposed method, without any parameter adaptation or fine tuning for a specific scenario, performs similarly to state-of-the-art commercial systems in traditional datasets, and outperforms both academic and commercial approaches in challenging datasets.

Benchmarks

BenchmarkMethodologyMetrics
license-plate-recognition-on-aolp-rpSergio et al.
Average Recall: 98.36

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
License Plate Detection and Recognition in Unconstrained Scenarios | Papers | HyperAI