HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Local Decorrelation For Improved Pedestrian Detection

{Woonhyun Nam Piotr Dollar Joon Hee Han}

Local Decorrelation For Improved Pedestrian Detection

Abstract

Even with the advent of more sophisticated, data-hungry methods, boosted decision trees remain extraordinarily successful for fast rigid object detection, achieving top accuracy on numerous datasets. While effective, most boosted detectors use decision trees with orthogonal (single feature) splits, and the topology of the resulting decision boundary may not be well matched to the natural topology of the data. Given highly correlated data, decision trees with oblique (multiple feature) splits can be effective. Use of oblique splits, however, comes at considerable computational expense. Inspired by recent work on discriminative decorrelation of HOG features, we instead propose an efficient feature transform that removes correlations in local neighborhoods. The result is an overcomplete but locally decorrelated representation ideally suited for use with orthogonal decision trees. In fact, orthogonal trees with our locally decorrelated features outperform oblique trees trained over the original features at a fraction of the computational cost. The overall improvement in accuracy is dramatic: on the Caltech Pedestrian Dataset, we reduce false positives nearly tenfold over the previous state-of-the-art.

Benchmarks

BenchmarkMethodologyMetrics
pedestrian-detection-on-caltechLDCF
Reasonable Miss Rate: 24.8

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Local Decorrelation For Improved Pedestrian Detection | Papers | HyperAI