HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

“Look Ma, no landmarks!” – Unsupervised, Model-based Dense Face Alignment

{William A. P. Smith Tatsuro Koizumi}

“Look Ma, no landmarks!” – Unsupervised, Model-based Dense Face Alignment

Abstract

no landmarks!"" - Unsupervised, model-based dense face alignment","In this paper, we show how to train an image-to-image network to predict dense correspondence between a face image and a 3D morphable model using only the model for supervision. We show that both geometric parameters (shape, pose and camera intrinsics) and photometric parameters (texture and lighting) can be inferred directly from the correspondence map using linear least squares and our novel inverse spherical harmonic lighting model. The least squares residuals provide an unsupervised training signal that allows us to avoid artefacts common in the literature such as shrinking and conservative underfitting. Our approach uses a network that is 10$ imes$ smaller than parameter regression networks, significantly reduces sensitivity to image alignment and allows known camera calibration or multi-image constraints to be incorporated during inference. We achieve results competitive with state-of-the-art but without any auxiliary supervision used by previous methods.

Benchmarks

BenchmarkMethodologyMetrics
3d-face-reconstruction-on-now-benchmark-1UMDFA
Mean Reconstruction Error (mm): 1.89
Median Reconstruction Error: 1.52
Stdev Reconstruction Error (mm): 1.57

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
“Look Ma, no landmarks!” – Unsupervised, Model-based Dense Face Alignment | Papers | HyperAI