HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Pain Evaluation in Video using Extended Multitask Learning from Multidimensional Measurements

{Virginia R. de Sa Jeannie S. Huang Xiaojing Xu}

Pain Evaluation in Video using Extended Multitask Learning from Multidimensional Measurements

Abstract

Previous work on automated pain detection from facial expressions has primarily focused on frame-level pain metrics based on specific facial muscle activations, such as Prkachin and Solomon Pain Intensity (PSPI). However, the current gold standard pain metric is the patient's self-reported visual analog scale (VAS) level which is a video-level measure. In this work, we propose a multitask multidimensional-pain model to directly predict VAS from video. Our model consists of three stages: (1) a VGGFace neural network model trained to predict frame-level PSPI, where multitask learning is applied, i.e. individual facial action units are predicted together with PSPI, to improve the learning of PSPI; (2) a fully connected neural network to estimate sequence-level pain scores from frame-level PSPI predictions, where again we use multitask learning to learn multidimensional pain scales instead of VAS alone; and (3) an optimal linear combination of the multidimensional pain predictions to obtain a final estimation of VAS. We show on the UNBC-McMaster Shoulder Pain dataset that our multitask multidimensional-pain method achieves state-of-the-art performance with a mean absolute error (MAE) of 1.95 and an intraclass correlation coefficient (ICC) of 0.43. While still not as good as trained human observer predictions provided with the dataset, when we average our estimates with those human estimates, our model improves their MAE from 1.76 to 1.58. Trained on the UNBC-McMaster dataset and applied directly with no further training or fine-tuning on a separate dataset of facial videos recorded during post-appendectomy physical exams, our model also outperforms previous work by 6% on the Area under the ROC curve metric (AUC).

Benchmarks

BenchmarkMethodologyMetrics
pain-intensity-regression-on-unbc-mcmasterExtended MTL
MAE (VAS): 1.95

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Pain Evaluation in Video using Extended Multitask Learning from Multidimensional Measurements | Papers | HyperAI