HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Pixel-Level Kernel Estimation for Blind Super-Resolution

{Jae-Pil Heo Euiyeon Kim Jaihyun Lew}

Abstract

Throughout the past several years, deep learning-based models have achieved success in super-resolution (SR). The majority of these works assume that low-resolution (LR) images are ‘uniformly’ degraded from their corresponding high-resolution (HR) images using predefined blur kernels — all regions of an image undergoing an identical degradation process. Furthermore, based on this assumption, there have been attempts to estimate the blur kernel of a given LR image, since correct kernel priors are known to be helpful in super-resolution. Although it has been known that blur kernels of real images are non-uniform (spatially varying), current kernel estimation algorithms are mostly done at image-level, estimating one kernel per image. These algorithms inevitably become sub-optimal in handling scenarios where an image is degraded non-uniformly. A divide-and-conquer form of approach, dividing an image into several patches for individual kernel estimation and SR can be a simple solution for this matter. Nevertheless, this approach fails in practice. In this paper, we address this issue by pixel-level kernel estimation. The three main components for training a SR framework based on pixel-level kernel estimation are as follows: Kernel Collage — a method for synthesizing non-uniformly degraded LR images, designed considering the coherency of kernels at neighboring regions while abruptly changing at times, the indirect loss — a novel loss for training the kernel estimator, based on the reconstruction loss, and an additional optimization — a scheme to robustify the SR network to minor errors in kernel estimations. Extensive experiments show the superiority of pixel-level kernel estimation in blind SR, surpassing state-of-the-art methods in terms of quantitative and qualitative results.

Benchmarks

BenchmarkMethodologyMetrics
blind-super-resolution-on-div2krk-4xPerPix
PSNR: 27.69
SSIM: 0.7820

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Pixel-Level Kernel Estimation for Blind Super-Resolution | Papers | HyperAI