HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

T-YOLO: Tiny Vehicle Detection Based on YOLO and Multi-Scale Convolutional Neural Networks

{Domenec Puig Miguel Ángel García Hatem RashwanHatem Rashwan Daniel Padilla Carrasco}

Abstract

To solve real-life problems for different smart city applications, using deep Neural Network, such as parking occupancy detection, requires fine-tuning of these networks. For large parking, it is desirable to use a cenital-plane camera located at a high distance that allows the monitoring of the entire parking space or a large parking area with only one camera. Today’s most popular object detection models, such as YOLO, achieve good precision scores at real-time speed. However, if we use our own data different from that of the general-purpose datasets, such as COCO and ImageNet, we have a large margin for improvisation. In this paper, we propose a modified, yet lightweight, deep object detection model based on the YOLO-v5 architecture. The proposed model can detect large, small, and tiny objects. Specifically, we propose the use of a multi-scale mechanism to learn deep discriminative feature representations at different scales and automatically determine the most suitable scales for detecting objects in a scene (i.e., in our case vehicles). The proposed multi-scale module reduces the number of trainable parameters compared to the original YOLO-v5 architecture. The experimental results also demonstrate that precision is improved by a large margin. In fact, as shown in the experiments, the results show a small reduction from 7.28 million parameters of the YOLO-v5-S profile to 7.26 million parameters in our model. In addition, we reduced the detection speed by inferring 30 fps compared to the YOLO-v5-L/X profiles. In addition, the tiny vehicle detection performance was significantly improved by 33% compared to the YOLO-v5-X profile.

Benchmarks

BenchmarkMethodologyMetrics
parking-space-occupancy-on-pklotT-YOLO
Average-mAP: 0.9985

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
T-YOLO: Tiny Vehicle Detection Based on YOLO and Multi-Scale Convolutional Neural Networks | Papers | HyperAI