HyperAIHyperAI

Command Palette

Search for a command to run...

3 months ago

Unsupervised Domain Adaption Harnessing Vision-Language Pre-training

{Wenlve Zhou and Zhiheng Zhou}

Abstract

This paper addresses two vital challenges in Unsupervised Domain Adaptation (UDA) with a focus on harnessing the power of Vision-Language Pre-training (VLP) models. Firstly, UDA has primarily relied on ImageNet pre-trained models. However, the potential of VLP models in UDA remains largely unexplored. The rich representation of VLP models holds significant promise for enhancing UDA tasks. To address this, we propose a novel method called Cross-Modal Knowledge Distillation (CMKD), leveraging VLP models as teacher models to guide the learning process in the target domain, resulting in state-of-the-art performance. Secondly, current UDA paradigms involve training separate models for each task, leading to significant storage overhead and impractical model deployment as the number of transfer tasks grows. To overcome this challenge, we introduce Residual Sparse Training (RST) exploiting the benefits conferred by VLP's extensive pre-training, a technique that requires minimal adjustment (approximately 0.1%~0.5%) of VLP model parameters to achieve performance comparable to fine-tuning. Combining CMKD and RST, we present a comprehensive solution that effectively leverages VLP models for UDA tasks while reducing storage overhead for model deployment. Furthermore, CMKD can serve as a baseline in conjunction with other methods like FixMatch, enhancing the performance of UDA. Our proposed method outperforms existing techniques on standard benchmarks. Our code will be available at: https://github.com/Wenlve-Zhou/VLP-UDA.

Benchmarks

BenchmarkMethodologyMetrics
domain-adaptation-on-imageclef-daCMKD
Accuracy: 94.3
domain-adaptation-on-office-31CMKD
Average Accuracy: 94.4
domain-adaptation-on-office-homeCMKD
Accuracy: 89.0
domain-adaptation-on-visda2017CMKD
Accuracy: 91.8

Build AI with AI

From idea to launch — accelerate your AI development with free AI co-coding, out-of-the-box environment and best price of GPUs.

AI Co-coding
Ready-to-use GPUs
Best Pricing
Get Started

Hyper Newsletters

Subscribe to our latest updates
We will deliver the latest updates of the week to your inbox at nine o'clock every Monday morning
Powered by MailChimp
Unsupervised Domain Adaption Harnessing Vision-Language Pre-training | Papers | HyperAI